Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(17): 19897-19906, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446535

RESUMO

The functional microporous layer, acting as a mass-transfer control medium with a rational structure and surface morphology as well as high electrical conductivity, significantly affects the performance of micro-direct methanol fuel cells (µDMFCs). Bioinspired by the architecture and multi-functional properties of mangrove roots, this study develops a simple and versatile strategy based on magnetron sputtering and chemical vapor deposition to fabricate a mangrove root-inspired carbon nanotube film (MR-CNTF) as the functional interface in µDMFCs. It has features such as ultralightweight, high porosity, and good electrical conductivity. During the synthesis process, an apex-growth model of CNTF is identified. The results indicate that the MR-CNTF used as a cathodic microporous layer can remarkably facilitate the oxygen transport and water management. Because of its multi-functional structure and excellent material characteristics, the passive µDMFC displays a peak power density of 14.9 mW cm-2 at 68 mA cm-2. This value is 88.6% higher than the highest power density of the one based on a carbon nanotube array (7.9 mW cm-2) and 45% higher than that of the conventional carbon black (10.7 mW cm-2). We believe that this novel material with its multi-functional structure illuminates a promising application for fuel cells and other energy storage and conversion devices.

2.
Nanoscale ; 12(14): 7461-7484, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32227011

RESUMO

Lithium-ion batteries (LIBs) play an important role in modern society. The low capacity of graphite cannot meet the demands of LIBs calling for high power and energy densities. Silicon (Si) is one of the most promising materials instead of graphite, because of its high theoretical capacity, low discharge voltage, low cost, etc. However, Si shows low conductivity of both ions and electrons and exhibits a severe volume change during cycles. Fabricating nano-sized Si and Si-based composites is an effective method to enhance the electrochemical performance of LIB anodes. Using a small size of Si nanoparticles (SiNPs) is likely to avoid the cracking of this material. One critical issue is to disclose different types and electrochemical effects of various coupled materials in the Si-based composites for anode fabrication and optimization. Hence, this paper reviews diverse SiNP-based composites for advanced LIBs from the perspective of composition and electrochemical effects. Almost all kinds of materials that have been coupled with SiNPs for LIB applications are summarized, along with their electrochemical influences on the composites. The integrated materials, including carbon materials, metals, metal oxides, polymers, Si-based materials, transition metal nitrides, carbides, dichalcogenides, alloys, and metal-organic frameworks (MOFs), are comprehensively presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...